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Abstract

Mounting evidences have shown that progression of white matter hyperintensi-

ties (WMHs) with vascular origin might cause cognitive dysfunction symptoms

through their effects on brain networks. However, the vulnerability of specific

neural connection related to WMHs in Alzheimer's disease (AD) still remains

unclear. In this study, we established an atlas-guided computational framework

based on brain disconnectome to assess the spatial–temporal patterns of WMH-

related structural disconnectivity within a longitudinal investigation. Alzheimer's

Disease Neuroimaging Initiative (ADNI) database was adopted with 91, 90 and

44 subjects including in cognitive normal aging, stable and progressive mild cogni-

tive impairment (MCI), respectively. The parcel-wise disconnectome was com-

puted by indirect mapping of individual WMHs onto population-averaged

tractography atlas. By performing chi-square test, we discovered a spatial–

temporal pattern of brain disconnectome along AD evolution. When applied such

pattern as predictor, our models achieved highest mean accuracy of 0.82, mean

sensitivity of 0.86, mean specificity of 0.82 and mean area under the receiver

operating characteristic curve (AUC) of 0.91 for predicting conversion from MCI

to dementia, which outperformed methods utilizing lesion volume as predictors.

Our analysis suggests that brain WMH-related structural disconnectome contrib-

utes to AD evolution mainly through attacking connections between: (1) parahip-

pocampal gyrus and superior frontal gyrus, orbital gyrus, and lateral occipital

cortex; and (2) hippocampus and cingulate gyrus, which are also vulnerable to Aβ

and tau confirmed by other researches. All the results further indicate that a syn-

ergistic relationship exists between multiple contributors of AD as they attack

similar brain connectivity at the prodromal stage of disease.
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1 | INTRODUCTION

Increasing evidences recognize Alzheimer's disease (AD) as a multifac-

torial and heterogeneous disease with multiple contributors to its

pathophysiology, including cerebral vascular dysfunction (Soto-Rojas

et al., 2021; Sweeney et al., 2019). According to the two-hit vascular

hypothesis of AD pathology, dysfunction of brain microcirculation ini-

tiates a cascade of pathogenetic events that cause regional lesions in

brain parenchyma which contribute to dementia through directly dam-

age of neurons and their connectivity (Apátiga-Pérez et al., 2021;

Iadecola, 2017; Sweeney et al., 2019). Regional burden of white mat-

ter hyperintensities (WMHs) with presumed vascular origin, are typical

image markers of cerebral small vessel disease (CSVD), which is a dis-

order of the brain's small perforating arterioles, capillaries, and proba-

bly venules (Wardlaw et al., 2019). Although mounting evidences

have confirmed that associations between the presence of WMHs

and decreased cognitive functions are, at least in part, mediated

through network disruption (Ter Telgte et al., 2018), the question of

which specific neural circuits are particularly vulnerable to or suffering

the most severe impairments from the accumulation of regional

WMHs across the spectrum of AD neurodegeneration still remains

unclear.

In recent years, diffusion MRI had been evolved as a powerful

method to quantify brain structural connectivity alterations associated

with AD. Diffusion alterations in the white matter are frequently

observed across the AD continuum (Nasrabady et al., 2018). In pre-

symptomatic sporadic and mutation carriers of autosomal dominant

AD, microstructural alterations (fractional anisotropy, FA and mean

diffusivity, MD) were observed accompanied with pathological accu-

mulation in anterior cingulum, posterior cingulum, and uncinate fascic-

ulus (Pichet Binette et al., 2021). Studies using regions-of-interest or

tract-based analysis detected specific spatial patterns of structural

connectivity alterations located in parahippocampal cingulum and

inferior temporal in AD and mild cognitive impairment (MCI) cohorts

(Raghavan et al., 2022; Vemuri et al., 2019). Using fixel-based analysis

with constrained spherical deconvolution (Dhollander et al., 2021),

researchers reported reductions in both fiber density and fiber-bundle

cross-section of specific fiber pathways associated with default mode

network nodes in AD (Mito et al., 2018). Furthermore, reductions of

fiber density and cross-section were detected within posterior cingu-

lum in MCI cohorts (Mito et al., 2018).

However, global structural and tract-specific connectivity metrics

seem largely determined by CSVD-related white matter damage other

than AD biomarkers in a memory clinic setting, even in samples in

which AD was the clinically predominant disease (Finsterwalder

et al., 2020; Taylor et al., 2016). While AD and CSVD are distinct dis-

ease, the majority of patients who seek clinical care in memory clinics

present with both AD and CSVD-related brain alterations to varying

degrees (Dewenter et al., 2022). A histopathology study found that up

to 80% of patients with prodromal AD show cerebrovascular alter-

ations upon autopsy (Kapasi et al., 2017). A widely held view is that

CSVD-associated white matter damages are caused by dysfunctions

of vascular-glio-neuronal unit including: chronic hypoperfusion,

impaired cerebrovascular reactivity, dysfunction of glymphatic system,

blood–brain barrier leakage or compromised myelin remodeling

(Joutel & Chabriat, 2017; Wardlaw et al., 2019). The vessel-intrinsic

mechanisms also contribute to amyloid accumulation through cerebral

amyloid angiopathy (Dadar et al., 2020; Lorenzini et al., 2022). These

evidences suggest an interactive and synergistic relationship exists

between CSVD and AD, which enlighten us to consider the contribu-

tion of WMHs while investigating the progressive impairments of

structural connectivity associated with AD.

Recently, structural disconnectome has been proposed to charac-

terize the disruptions caused by local lesions on connectivity by spa-

tially mapping white matter fiber tracts with regional brain lesions

(Carolyn D. Langen et al., 2017; Zayed et al., 2020). Studies using

3714 participants from Rotterdam Study found that WMH-related

disconnectome was especially related to worse executive functioning

and concluded that WMH-related disconnectome explains more vari-

ation in cognitive function than regional lesion volumes (C. D. Langen

et al., 2018).

In this study, we hypothesized that specific neural connections or

circuits are preferentially targeted by the progression of regional

WMHs in patients of prodromal AD before large-scale brain connec-

tivities are disturbed. As the evolution of AD physiopathology, an

inherent spatial–temporal progressive pattern of WMH-related brain

structural disconnectome can be detected by neuroimaging at parcel-

wise connection level. These knowledges might help us gain a better

understanding of how CSVD contributing to AD pathophysiology, and

result in better prognosis of neurodegeneration in MCI cohorts. How-

ever, to our best knowledge, there is no study focusing on unraveling

the progressive patterns of WMH-related structural disconnectome

across the spectrum of AD, mainly due to lack of computational

methods to associate regional WMH accumulation with disconnec-

tions happened between specific pair of brain regions.

To address this caveat, we used well-described brain disconnec-

tome to quantify the disruptions of WMHs exerted on brain structural

connectivity, we then established an atlas-guided indirect mapping

framework to assess the spatial distinctive and temporal progressive

brain disconnectome due to WMHs at parcel-wise connection level

using a longitudinal dataset including cognitive normal (CN), stable

MCI (sMCI) and progressive MCI (pMCI) groups. Prediction models for

conversion from MCI to dementia were proposed. Our results found

that specific connections associated with parahippocampal gyrus, and

hippocampus are significantly vulnerable to the progression of WMHs

in pMCI cohort. We proved that this pattern of brain disconnectome

is a promising predictor for AD-related neurodegeneration.

2 | MATERIALS AND METHODS

2.1 | Data preparation

Data used in current study were obtained from the Alzheimer's Dis-

ease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). The

ADNI was launched in 2003 by the National Institute on Aging (NIA),
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the National Institute of Biomedical Imaging and Bioengineering

(NIBIB), the Food and Drug Administration (FDA), private pharmaceu-

tical companies and non-profit organisations, as a public-private part-

nership. It has become the largest opensource database for studying

progression of MCI and early AD. Three groups with longitudinal

follow-up visits were enrolled in this study, including CN, sMCI, and

pMCI. The stable MCI are individuals diagnosed as MCI at baseline,

but did not convert to dementia during the whole follow-up (at least

3 years). The CN group includes individuals diagnosed as cognitive

normal during whole follow-up visits (at least 3 years). The pMCI

group includes subjects who diagnosed as MCI at the baseline, and

eventually converted to AD at any of the follow-up visits. The inclu-

sion criteria were as follows: First, MRI acquisitions including both T1

weighted and T2-weighted with fluid-attenuated inversion recovery

(T2-FLAIR) imaging are available at three longitudinal visits: baseline,

the first follow-up and the second follow-up. Second, in pMCI group,

the second visit (i.e., the first follow-up) should be at least 1 year

before conversion, patients should be diagnosed as dementia at the

last visit (i.e., the second follow-up). Third, the age of all the enrolled

subjects should be between 65 and 85 years at the baseline. Fourth,

neurological assessment batteries including Alzheimer's Disease

Assessment Scale (ADAS), and Mini Mental State Examination

(MMSE) are available at three visits. MMSE score should be larger

than 21 at baseline. Neurological assessments should be in the same

year as MRI acquisitions. Last, negative results on amyloid-β status for

cognitive normal subjects, positive results on amyloid-β status for sub-

jects in sMCI and pMCI group. The subjects inclusion is summarized in

Figure 1.

For further selection, subjects were excluded for following rea-

sons: First, nonmonotone diagnosis. Second, diagnosis not available at

the last visit. Third, other pathologies exist, such as stroke, depression

and craniocerebral trauma. Fourth, High levels of MR artifacts due to

head-motion or magnetic susceptibility distortion, and failure of brain

segmentation using T1. As shown in Figure 1, 37 CN subjects and

47 MCI subjects were excluded in this procedure.

Finally, we included 91, 90 and 44 individuals in CN, sMCI and

pMCI groups at baseline, respectively. Then we labeled the time

point for the last visit based on the conversion diagnosis in pMCI

group, time duration between baseline and the last visit of pMCI

subjects were 3.20 ± 1.36 years. We further defined the second

visit for pMCI group based on the principle that the time should be

at least 1 year before conversion. At last, the time of second visit

for CN and sMCI was determined according to the duration in

pMCI group, respectively. All participants had provided informed

written consent before recruitment and filled out questionnaires

approved by the respective Institutional Review Board (IRB). The

demographic information of enrolled subjects at baseline are shown

in Table 2.

2.2 | Image acquisition protocol

Typical MRI scan parameters of T1 are field strength is 3.0 T; flip

angle = 9.0�; manufacturer = SIEMENS; matrix: 240 � 256 � 176;

pixel spacing X = 1.0 mm, Y = 1.0 mm; pulse sequence = GR/IR; slice

thickness = 1.2 mm; TE = 3.0 ms; TI = 900.0 ms; TR = 2300.0 ms.

F IGURE 1 Flowchart of subject enrollment and the determination of time point for longitudinal follow-up visits.
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Typical MRI scan parameters of T2-FLAIR are acquisition

plane = AXIAL; field strength = 3.0 T; flip angle = 150.0�;

manufacturer = SIEMENS; matrix: 256 � 256 � 35; pixel spacing

X = 0.9 mm; pixel spacing Y = 0.9 mm; pulse sequence = SE/IR; slice

thickness = 5.0 mm; TE = 91.0 ms; TI = 2500.0 ms; TR = 9000.0 ms.

2.3 | Image preprocessing

We performed whole brain parcellation using Brain Label (http://

brainsite.cn/), which provides automated cloud service for whole

brain tissue parcellation of T1 images based on multiple atlas likeli-

hood fusion algorithm and preselection strategy (Tang et al., 2013;

Wu et al., 2016). Brain Label segments the whole brain into

283 regions consisted of gray matter, white matter, cerebrospinal

fluid and ventricle. After whole brain parcellation was performed,

T1 was transformed to the native space of T2-FLAIR by intrasubject

coregistration using FSL FLIRT (Jenkinson et al., 2002; Jenkinson &

Smith, 2001) so that brain parcellation can immediately define on

T2-FLAIR. We then performed global inhomogeneity corrections of

T1 and T2-FLAIR using N4 bias field correction (Tustison

et al., 2010) built in advanced normalization tools (ANTs). For fol-

lowing WMH segmentation, we further normalized the intensities

of T1 and T2-FLAIR by Gaussian normalization. Intracranial brain

tissue mask in the space of T2-FLAIR was generated by FSL BET

(Smith, 2002).

2.4 | Modeling brain disconnectome

WMH segmentation was performed using a self-developed deep

learning-based pipeline: AU-Net (Liang et al., 2021; Ronneberger

et al., 2015). Two observers independently inspected the quality

of WMH segmentation and localization blinded from diagnostic

and demographic information. After discussion between two

observers, manually corrections were performed for false segmen-

tation and wrongly localization of WMHs. Regional volumes of

WMHs in 29 predefined white matter regions (Liang et al., 2021)

were calculated then normalized by whole brain white matter vol-

ume for further analysis. We also calculated the whole brain

WMH volume for each subject, and normalized by whole brain

white matter volume.

Atlas-guided indirect mapping method (Carolyn D. Langen

et al., 2017) was used to compute brain disconnectome as shown

in Figure 2. Binarized WMH lesion maps were warped to Montreal

Neurological Institute 1 mm isotropic space (MNI152) through

nonlinear coregistration between T1 images using symmetric nor-

malization implemented in ANTs (Avants et al., 2008). We used the

population-averaged white matter tractography atlas (HCP842)

(Yeh et al., 2018) as streamline template for computing whole brain

connectivity (denoted as atlas connectome). Label images pro-

duced by brain parcellation were transformed to MNI152 space,

then regrouped to 31 gray matter regions (Fan et al., 2016), details

are shown in Appendix. This parcellation was used as template for

constructing parcel-wise connectome. We calculated the number

of streamlines which traversed through the volumes occupied by

WMHs (these streamlines are denoted as WMH-affected stream-

lines). WMH-affected streamlines for each parcel-wise connection

were normalized by total streamlines within this connection to

obtain parcel-wise disconnectome.

Age and education are known to affect the regional

volume of WMHs (Hu et al., 2021; Wardlaw et al., 2019), further

associated with WMH-related parcel-wise disconnectome. We

adopted the method proposed by Dukart et al. (2011) to correct

for the confounding effects induced by age and education. Given

that there is no significant group difference between CN, sMCI

and pMCI based on age and education in our study (Table 2), we

performed multiple linear regression as Equation (1) in CN

cohorts.

YCN ¼ β0þβ1XCN,ageþβ2XCN,edu ð1Þ

Ycorr ¼ max Y�β1Xage�β2Xeduð Þ,0ð Þ ð2Þ

In Equation (1), XCN,age and XCN,edu are the age and education

vector for CN subjects. YCN is the parcel-wise disconnectome

associated with CN before correction. After the coefficients: β1

and β2 were estimated, they were applied to the whole dataset to

obtain corrected parcel-wise disconnectome Ycorr as shown in

Equation (2).

We further computed binarized residual connectome using the

corrected parcel-wise disconnectome as shown in Table 1. Disconnec-

tome progress was defined by Equation (3).

DPvi ¼Rbs�Rvi ð3Þ

Rvi represents the binarized residual connectome at the first or

second follow-up, corresponding to vi = 1 or 2, respectively. Rbs

denotes binarized residual connectome at baseline. DP represents

WMH-related disconnectome progress. For each subject at specific

follow-up visit, DPvi = 1 indicates progressive disconnection hap-

pened between specific pair of regions, whereas DPvi = 0 denotes

reserving of connection.

2.5 | Prediction models

Prediction models for conversion from MCI to dementia were pro-

posed using three types of classifiers: logistic regression, support vec-

tor machine and random forest. These models are built in different

time points, which were baseline and the first follow-up. We calcu-

lated corrected parcel-wise disconnectome between one gray matter

region and the other gray matter regions, resulting in a 31 � 1 feature

vector for each subject (hereinafter referred to as node disconnec-

tome). Disconnectome progress was computed by subtracting base-

line node disconnectome from the first follow-up node
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disconnectome without binarization in this section, which generating

another 31 � 1 feature vector for each subject at the first follow-up

(hereinafter referred to as node disconnectome progress). For each

type of classifiers, five prediction models were proposed, with two of

them at baseline utilizing normalized regional WMH volumes (vector

with 29 elements) and node disconnectome; and three of them at the

first follow-up utilizing normalized regional WMH volumes (vector

with 29 elements), node disconnectome and node disconnectome

F IGURE 2 Flowchart of atlas-guided indirect mapping framework. BE, brain tissue extraction; coreg2flair, coregister to T2-FLAIR space; CG,
cingulate gyrus; Hippo, hippocampus.
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progress. In summary, totally 15 models with different feature sets

were proposed as shown in Table 4.

For each prediction model, cross-validation was performed

100 times. In order to tackle the class imbalance problem, in each

cross-validation, 44 subjects were randomly chosen from sMCI group

(with totally 90 subjects), resulting a subset consisted of 44 sMCI sub-

jects and 44 pMCI subjects. We then performed leave-one-out cross

validation in this subset. Sensitivity, specificity, accuracy, receiver

operating characteristic curve (ROC) and area under the curve (AUC)

were calculated in this subset.

Feature selections associated with LR and SVM were per-

formed by L1 regularization (LASSO) (Tibshirani, 1996). We used

“RandomForestClassifier” built in python package “sklearn. ensem-

ble” to construct random forest models, with number of decision

trees equals to 36. In order to decide the optimal number of deci-

sion trees, we simply performed leave-one-out cross validation in

the whole dataset (90 sMCI and 44 pMCI) with a grid search from

1 to 200 decision trees (step = 1), and maximizing the classification

accuracy.

2.6 | Statistical analysis

For demographics and neuropsychological sores: group difference

associated with gender was detected by chi-square test; group differ-

ences associated with age, education, time duration between different

visits and neuropsychological scores were detected using non-

parametric Kruskal–Wallis test. Post-hoc comparisons were per-

formed by Mann–Whitney U test.

We performed group comparison and post-hoc analysis between

CN, sMCI and pMCI based on WMH burden (measured by whole

brain WMH volume normalized by bilateral cerebellum gray matter

volume and parcel-wise disconnnectome) at baseline, using analysis of

covariance (ANCOVA) with age and education added as covariates.

Furthermore, each subject can be classified into small WMH burden

(whole brain WMH volume ≤5 mL), medium WMH burden

(5 mL < whole brain WMH volume ≤ 15 mL), and large WMH burden

(whole brain WMH volume > 15 mL). We used chi-square test to

detect whether there is significant difference based on proportion of

different WMH burden group. Chi-square test was used to detect sig-

nificant disconnectome progress for both group and post-hoc

comparisons.

Multiple comparisons were corrected by performing permutation

test for 10,000 times, we shuffled our data based on diagnostic

groups. Empirical distributions of maximum statistics (F for testing

group difference associated with parcel-wise disconnectome at base-

line, χ2 for testing group difference associated with disconnectome

progress) under null hypothesis were computed. We controlled false

discovery rate (α) under 0.05.

We compared the performance of prediction models using node

disconnectome and node disconnectome progress with those models

using normalized regional WMH volumes by one-tail unpaired T-test,

where multiple comparisons were corrected by FDR correction

(Benjamini & Hochberg, 1995).

3 | RESULTS

3.1 | Demographics and neuropsychological scores

Patients in sMCI and pMCI groups did not differ from cognitive

normal controls in age, gender, and education level. As shown in

Table 2, significant group differences were detected based on neu-

ropsychological scores. Post-hoc comparison showed no differ-

ences between sMCI and pMCI based on neuropsychological

scores at baseline. At the first and second follow-up visit, pMCI

group had presented significantly larger ADAS scores and lower

MMSE scores compared with sMCI group. Time durations between

baseline and follow-up visits did not differ among three groups in

this study.

3.2 | WMH burden at baseline

As shown in Table 3, neither normalized whole brain WMH volume

nor proportion of different WMH burden group presented significant

difference between CN, sMCI, and pMCI.

As shown in Figure 3, group comparisons detected significant dif-

ference in connection between parahippocampal gyrus and orbital

gyrus (PHG-OrG) after performing correction for multiple compari-

sons. In this connection, pMCI individuals suffered from significant

higher brain disconnetome than both sMCI and CN, whereas sMCI

cohorts did not differ from CN.

3.3 | Spatial–temporal patterns of brain
disconnectome

As shown in Figure 4, we detected progressive disconnections hap-

pened in connectivity between parahippocampal gyrus and superior

TABLE 1 Computing binarized
residual connectome.

Connectivity between brain region i and j No-connection in atlas With-connection in atlas

Streamlines in atlas connectome =0 >0 >0

Parcel-wise disconnectome – >thresh <thresh

Binarized residual connectome =0 =0 =1

Abbreviation: thresh, threshold, which was set to 0.5 in this study.
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frontal gyrus (PHG-SFG), orbital gyrus (PHG-OrG), and lateral occipital

cortex (PHG-LOcC) after correcting for multiple comparisons. Signifi-

cant larger proportions of individuals in pMCI group suffered from

progressive disconnections in PHG-SFG and PHG-OrG both at the

first (36.36% in PHG-SFG, 52.27% in PHG-OrG) and second follow-

up (59.09% in PHG-SFG, 75.00% in PHG-OrG) compared with sMCI

and CN, as shown in Figure 4c,d. We also detected significant discon-

nectome progress located in PHG-LOcC at the second follow-up in

pMCI cohorts, as shown in Figure 4b. Especially, sMCI did not differ

from CN in progressive disconnections associated with parahippocam-

pal gyrus in this longitudinal investigation. WMH-related disconnec-

tome progress was also detected in connection between

hippocampus and cingulate gyrus (Hippo-CG) as shown in Figure 5a.

In pMCI group, 9.09% and 20.45% individuals underwent progressive

disconnections at the first and second follow-up, which were signifi-

cantly higher than sMCI and CN (Figure 5b). At the first follow-up, no

subject suffered from this disconnectome progress both in sMCI and

CN groups. At the second follow-up, the proportion of sMCI patients

with progressive disconnection happened in Hippo-CG had increased

from 0.00% to 7.78%, which differed themselves from CN cohorts

with p < .05. This disconnectome progress pattern at Hippo-CG had

survived multiple comparison correction both at the first and second

follow-up.

3.4 | Prediction models for conversion from MCI
to AD

As shown in Table 4, the best performance based on all four metrics

(accuracy, AUC, sensitivity and specificity) at baseline was achieved by

model SVM-2 using node disconnectome as features. At the first follow-

up, model RF-4 had achieved best performance based on mean accuracy

(0.82) and specificity (0.82). SVM-4 achieved highest mean sensitivity

(0.86), and highest mean AUC (0.91). Furthermore, at both baseline and

the first follow-up, models using node disconnectome or node disconnec-

tome progress as features had better performance compared with models

using WMH volumes as features no matter which classification algorithm

was employed, most of them had achieved significant improvements

based on accuracy, AUC, sensitivity and specificity. The mean ROC under

100 times of cross-validation were presented in Figures S1–S3.

4 | DISCUSSION

In this study, we used an atlas-guided indirect mapping framework to

detect WMH-related spatial–temporal progressive brain structural

disconnectome across AD spectrum. The baseline brain disconnec-

tome differed among CN, sMCI, and pMCI in connectivity between

TABLE 2 Demographics and neuropsychological scores.

Demographics and neuropsychological scores CN sMCI pMCI

Gender (Male/Female) 43/48 44/46 24/20

Age (years) 74.02 ± 7.13 74.35 ± 7.09 75.18 ± 8.16

Education (years) 16.30 ± 2.44 16.26 ± 2.13 16.33 ± 2.58

Time duration between baseline and first

follow-up (in years)

1.07 ± 0.20 1.10 ± 0.14 1.14 ± 0.32

Time duration between baseline and second

follow-up (in years)

3.38 ± 0.97 3.32 ± 0.16 3.20 ± 1.36

MMSE at baseline 29.09 ± 1.19 27.09 ± 1.82** 26.81 ± 2.22**

MMSE at first follow-up 29.16 ± 1.16 27.02 ± 1.72** 25.74 ± 1.59**##

MMSE at second follow-up 28.99 ± 1.05 26.54 ± 2.19** 23.67 ± 2.83**##

ADAS at baseline 8.03 ± 4.26 16.07 ± 7.30** 16.43 ± 7.81**

ADAS at first follow-up 8.52 ± 4.67 16.58 ± 5.94** 19.45 ± 6.98**#

ADAS at second follow-up 8.82 ± 4.52 17.09 ± 6.32** 26.75 ± 8.69**##

Note: Data are represented as mean ± SD. Post-hoc comparisons detected significant difference between CN and sMCI or CN and pMCI with **p < .001,

between sMCI and pMCI with #p < .01 and ##p < .001.

Abbreviations: ADAS, Alzheimer's Disease Assessment Scale; MMSE, Mini Mental State Examination.

TABLE 3 Baseline WMH burden in CN, sMCI and pMCI.

Normalized WMH volume (%)

WMH burden group

Small (#subject) Medium (#subject) Large (#subject)

CN 0.44 ± 0.50 61 22 8

sMCI 0.55 ± 0.57 54 25 11

pMCI 0.66 ± 0.62 21 15 8

p Value .11 .28
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F IGURE 3 WMH-related parcel-wise
disconnectome at baseline. Significant
group differences were detected in
connections between parahippocampal
gyrus (PHG) and orbital gyyrus (OrG) after
correcting for multiple comparisons.
(a) Structural connections between PHG
and other cerebral gray matter regions are
shown by chord chart. Red link indicates

significant group difference was detected
on this connection. (b) Post hoc
comparison results are shown with:
*p < .05; **p < .01. ns, no significance.

F IGURE 4 WMH-related disconnectome progress was detected in connections associated with parahippocampal gyrus. (a) Structural
connections between parahippocampal gyrus and other cerebral gray matter regions are shown by chord chart. Red link indicates that group
difference of disconnectome progress was detected within specific connectivity both at the first and second follow-up after correcting for
multiple comparisons. Gold link denotes that group difference was only detected at the second follow-up after correcting for multiple
comparisons. Proportions of subjects suffering from progressive disconnections between PHG and (b) LOcC, (c) SFG, and (d) OrG are shown.
PHG, parahippocampal gyrus; SFG, superior frontal gyrus; OrG, orbital gyrus; LOcC, lateral occipital cortex. Abbreviations for other brain regions
are shown in Appendix. F1, the first follow-up; F2, the second follow-up. Post hoc analysis was performed with **p < .01 compared with CN;
#p < .05, and ##p < .01 compared with sMCI.
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orbital gyrus and parahippocampal gyrus. We then located the tempo-

ral progressive disconnectome patterns within connectivity associated

with parahippocampal gyrus and hippocampus. Using features associ-

ated with brain disconnectome, our best prediction models achieved

mean accuracy of 0.82, mean sensitivity of 0.86, mean specificity of

0.82 and mean AUC of 0.91 at average of 2.06 years before conver-

sion, which had outperformed models using lesion volumes as predic-

tors in this study.

4.1 | Atlas-based indirect mapping of brain
structural disconnectome

WMH-related disconnectome hypothesis states that WMHs might

give rise to clinical symptoms through its effects on structure or func-

tional connected brain networks (C. D. Langen et al., 2018; Carolyn

D. Langen et al., 2017; Ter Telgte et al., 2018). Mounting evidence

have confirmed that associations between the presence of WMHs

F IGURE 5 WMH-related disconnectome progress was detected in connections between hippocampus and cingulate gyrus. Structural
connections between (a) hippocampus and other cerebral gray matter regions are shown by chord chart. Red link indicates that group difference
of disconnectome progress was detected both at the first and second follow-up after correcting for multiple comparisons. (b) Proportions of
subjects in three groups suffering from progressive disconnections are shown. Hippo, hippocampus; CG, cingulate gyrus. Abbreviations for other
brain regions are shown in Appendix. F1, the first follow-up; F2, the second follow-up. Post hoc analysis was performed with, *p < .05, and
***p < .001 compared with CN; #p < .05 compared with sMCI.

TABLE 4 Performance of prediction models for conversion from MCI to dementia.

Model-ID Visit Feature Accuracy AUC Sensitivity Specificity

LR-1 BL vols 0.67 ± 0.18 0.71 ± 0.15 0.67 ± 0.09 0.68 ± 0.10

LR-2 BL disconnectome 0.72 ± 0.13* 0.84 ± 0.16** 0.73 ± 0.11** 0.71 ± 0.19

LR-3 F1 vols 0.66 ± 0.12 0.72 ± 0.14 0.70 ± 0.11 0.61 ± 0.10

LR-4 F1 disconnectome 0.78 ± 0.16** 0.86 ± 0.12** 0.78 ± 0.16** 0.78 ± 0.15**

LR-5 F1 DP 0.74 ± 0.19** 0.76 ± 0.13* 0.77 ± 0.17** 0.70 ± 0.17**

SVM-1 BL vols 0.67 ± 0.14 0.81 ± 0.16 0.65 ± 0.13 0.70 ± 0.12

SVM-2 BL disconnectome 0.74 ± 0.17** 0.86 ± 0.10** 0.74 ± 0.21** 0.74 ± 0.19*

SVM-3 F1 vols 0.72 ± 0.17 0.83 ± 0.13 0.75 ± 0.14 0.69 ± 0.20

SVM-4 F1 disconnectome 0.81 ± 0.10** 0.91 ± 0.08** 0.86 ± 0.16** 0.77 ± 0.18**

SVM-5 F1 DP 0.79 ± 0.13** 0.90 ± 0.08** 0.82 ± 0.11** 0.77 ± 0.10**

RF-1 BL vols 0.68 ± 0.21 0.72 ± 0.19 0.67 ± 0.14 0.71 ± 0.15

RF-2 BL disconnectome 0.73 ± 0.20* 0.74 ± 0.17 0.73 ± 0.22* 0.73 ± 0.20

RF-3 F1 vols 0.70 ± 0.15 0.72 ± 0.17 0.73 ± 0.16 0.68 ± 0.18

RF-4 F1 disconnectome 0.82 ± 0.14** 0.80 ± 0.14** 0.82 ± 0.12** 0.82 ± 0.12**

RF-5 F1 DP 0.79 ± 0.11** 0.86 ± 0.10** 0.77 ± 0.13* 0.82 ± 0.13**

Note: *p < .05 or **p < .01 compared with prediction model utilizing normalized regional WMH volumes as features at the same visit. Bold-face indicates

best performance at baseline or the first follow-up.

Abbreviations: BL, baseline; disconnectome, node disconnectome; DP, node disconnectome progress; F1, the first follow-up; LR, logistic regression; RF,

random forest; SVM, support vector machine; vols, regional WMH volumes.
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and decreased cognitive functions were, at least in part, mediated

through network disruption (Ter Telgte et al., 2018; Tuladhar

et al., 2017; Wardlaw et al., 2019). These results have supported our

hypothesis that WMHs contribute to AD related neurodegeneration

and dementia by producing progressive impairments within brain

structural connectivity. In this paper, we proposed a computation

framework which can monitor the spatial–temporal progression of

individual brain disconnectome at parcel-wise connection level. The

main challenge for detecting WMH-related disconnectome is that

lesions can alter the diffusion properties of white matter and disrupt

computerized fiber tracking algorithms (Griffis et al., 2021). In order to

tackle this problem, virtual lesion method (Griffis et al., 2021; Li

et al., 2021) had been proposed by conducting fiber tracking using

DTI from healthy subjects with white matter lesions inserted as

regions of avoidance after coregistration. This method has also been

termed as indirect mapping (Salvalaggio et al., 2020). In our study, we

also used indirect mapping to characterize the location of WMHs

within parcel-wise brain connectivity. Brain disconnectome were nor-

malized by atlas connectome: “HCP842” (Yeh et al., 2018), which

enabled the evaluation of disconnection severity for individual

subject.

4.2 | Patterns of WMH-related structural
disconnectome in AD

Alzheimer's disease is increasingly considered as a progressive degen-

erative disease, associated with the aggregation of heterogeneous

pathologies, including pathological proteins, cortical atrophy, meta-

bolic dysfunction, cerebrovascular alterations and so on (Dubois

et al., 2021; Sweeney et al., 2019). These pathological changes are

posited to arise in a stereotypical spatial–temporal manner, which tar-

geting intrinsic structural and functional brain networks in the brain,

and eventually induced primary amnestic syndrome and other

domains of cognitive impairments (Mito et al., 2018).

Mounting evidences demonstrate that a stereotypical distribution

of white matter degeneration exists in patients on the continuum of

AD progression (Mak et al., 2017; Mito et al., 2018; Pichet Binette

et al., 2021), evident in specific fiber pathways including the cingulum

bundle along its anterior, posterior, and parahippocampal aspects, the

splenium and genu corpus callosum, uncinate fasciculus, inferior

fronto-occipital fasciculus, the inferior longitudinal fasciculus and

arcuate fasciculus (Chen et al., 2020; Kitamura et al., 2013; Luo

et al., 2020; Mito et al., 2018). These fiber pathways are majorly asso-

ciated with default mode network (DMN) nodes, which is most nota-

bly attacked by AD pathologies as confirmed by studies using

functional neuroimaging (Brier et al., 2014; Jones et al., 2015; Jones

et al., 2017). In our results, we had detected spatial–temporal progres-

sive structural disconnectome located in connections between PHG

and SFG, PHG and OrG, which belong to uncinate fasciculus (Catani

et al., 2002). Uncinate fasciculus connects the orbitofrontal cortex

with temporal lobe, which has been proposed that it plays a role in

verbal and semantic performance (Han et al., 2013). Connection

between PHG and LOcG belong to inferior longitudinal fasciculus

(Catani et al., 2002), theses fiber tracts are critically involved in visu-

ally guided behaviors (Zemmoura et al., 2021). Connection between

Hippo and CG is part of parahippocampal cingulum (Bubb

et al., 2018), which is strongly associated with episodic memory (Bubb

et al., 2018). The spatial–temporal progressive patterns we found are

in line with the stereotypical distribution of white matter degenera-

tion in AD progression detected by previous studies.

Although the impairments of white matter microstructure is com-

monly considered a key marker both in AD and CSVD, recent studies

conclude that in memory clinical patients, the effect of CSVD on diffu-

sion alterations of brain structural connectivity is largely exceeds the

effect of AD (Dewenter et al., 2022; Finsterwalder et al., 2020). Taylor

et al. suggested that degeneration of fiber pathway may be closely

related to vascular pathology and WMHs, most evident in tracts con-

necting the brain regions in DMN (Taylor et al., 2016). However, pre-

vious researches did not associate the structural connectivity with the

presence of WMHs, such that the contribution of CSVD to the AD-

related white matter degeneration was not fully considered. In our

study, we used indirect mapping to associate the regional WMH

lesions to parcel-wise connection by spatially mapping, which to our

knowledge, is the first study hammering at assessing the spatial–

temporal patterns of WMH-related structural disconnectivity across

AD spectrum by a longitudinal investigation. Our results seem to indi-

cate that the stereotypical distribution pattern of white matter degen-

eration in AD is largely determined by the regional accumulation

of WMHs.

AD pathologies (tau and amyloid-β) target distinctive brain con-

nectivity in aging brain, involving different subregions of medial tem-

poral lobe (Dautricourt et al., 2021; Maass et al., 2019). Anterior

temporal (AT) and posterior medial (PM) networks are selectively vul-

nerable to AD pathologies in cognitively normal elderly subjects, with

tau targeting the AT network, whereas amyloid-β pathology preferen-

tially affects the PM network (Guzmán-Vélez et al., 2022; Maass

et al., 2019). In this paper, we had also located distinctive and progres-

sive spatial–temporal WMH-related disconnectome patterns within

connectivity arising from MTL (PHG and Hippo) to important nodes

belonging to AT (SFG and OrG) and PM (LoCG) network. Furthermore,

the vascular two-hit hypothesis of AD pathophysiology proposed that:

a synergistic relationship exists between the vascular dysfunction (hit

one) and amyloid-β accumulation (hit two) and hyperphosphorylation

of tau, which initially forms in the medial temporal lobe and hippo-

campus during the early stages AD before progressing to neocortex

(Braak & Braak, 1996; Iturria-Medina et al., 2016; Sweeney

et al., 2019). As shown in our results, in progressive MCI group, vascu-

lar origin WMHs preferentially attacked specific brain connectivity,

which is also vulnerable to amyloid-β plaques and tau neurofibrillary

tangles. These results supported the important role of vascular dys-

function in AD pathophysiology proposed by two-hit hypothesis. We

had located the vulnerable neural circuits related to the progression

of regional WMHs in patients on the AD continuum, this might aid in

developing screening method for early prodromal patients and future

therapies targeting in intervening vascular dysfunction in AD.
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4.3 | Brain disconnectome as predictor for AD
progress

The neurodegenerative process associated with AD leads to profound

structural and functional changes in the brain. In classification

between sMCI and pMCI, several studies achieved accuracy of

72.41%–81.50% using tissue density maps, cortical surface and struc-

tural texture of predefined ROIs as features with data enrolled from

ADNI (Liu, Zhang, Shen, & Alzheimer's Disease Neuroimaging, 2015;

Min et al., 2014; Misra et al., 2009; Sørensen et al., 2016). Using fluor-

odeoxyglucose positron-emission tomography (FDG-PET) to measure

the alterations in brain metabolism, Cabral et al. achieved mean accu-

racy of 74%–86% for the classification between sMCI and different

sets of pMCI subjects, which were divided based on their time to con-

version from 24 months to 6 months (Cabral et al., 2015). SVM, RF,

LR and LDA were commonly used learning algorithms (Rathore

et al., 2017).

In the past decade, deep-learning based approach have gained

considerable attention in early detection and automated classifica-

tion of AD, as it has powerful ability to process high dimensional

multimodal neuroimaging-based features and other heterogeneous

biomarkers. The combination of traditional machine learning for

classification and stacked auto-encoder (SAE) for feature selection

produced accuracy up to 83.3% for prediction of conversion from

mild cognitive impairment (MCI) (Suk et al., 2015). Deep learning

approaches, such as convolutional neural network (CNN) or recur-

rent neural network (RNN), that use neuroimaging data without

preprocessing for feature selection have yielded accuracies up to

84.2% for MCI conversion prediction (Choi, Jin, & Alzheimer's Dis-

ease Neuroimaging, 2018). The best classification performance

was obtained when multimodal neuroimaging, flurodeoxyglucose

and florbetapir PET and fluid biomarkers were combined (Jo

et al., 2019).

Recently, Valentina Bordin et al. explored the problem of

“Explainable AI” in AD classification tasks using occlusion sensitivity

method, their results revealed a promisingly relevant contribution of

the WMH regions in the classification task of AD diagnose and prog-

nosis (Bordin et al., 2022). Moreover, Yun Wang et al. used brain mor-

phometry and white matter connectomes to formulate diagnose and

prognosis models for AD (Wang et al., 2019). The white matter con-

nectomes were constructed by probabilistic tractography using con-

strained spherical devolution, streamline counts and mean length

were used as connectivity metrics. Benchmark models used regional

WMH volumes and CSF biomarkers as features (Wang et al., 2019).

The results showed that in predicting MCI to AD progression in a

smaller cohort of ADNI-2 (n = 60), the morphometry and connectome

model showed performance with 69% accuracy compared with

benchmark model with 70% accuracy (Wang et al., 2019). However,

their prediction models did not associated structural connectome with

the presence of WMHs.

Given our goal is to evaluate the WMH-related brain structural

disconnectome as a promising predictor for conversion from MCI to

dementia, rather than to find a novel machine learning algorithm. We

formulated our classification models using random forest, logistic

regression and support vector machine, which were extensively used

in the literature (Rathore et al., 2017). We also want to prove that

WMH-related brain disconnectome is a better image marker in pre-

dicting AD-related neurodegeneration compared with WMH volumes.

Thus we compared model performances utilizing different features

consisted of normalized regional WMH volumes, node disconnnec-

tome and node disconnectome progress. Our results (Table 4) showed

that all the models using disconnectome-related features had outper-

formed those using lesion volume-related features at both baseline

and the first follow-up. Our models using disconnectome had

achieved accuracies of classification between sMCI and pMCI up to

74%–82% at the first follow-up, which is on average 2.06 years

before connversion. This result is comparable to previous studies uti-

lizing structural MRI or connectome-based image markers with tradi-

tional machine learning algorithms as classification models (Rathore

et al., 2017; Sørensen et al., 2016; Wang et al., 2019). Although using

deep learning-based methods along with multimodal neuroimaging,

especially with FDG-PET and amyloid-PET, higher accuracies for pre-

dicting conversion can be achieved (Cabral et al., 2015; Jo et al., 2019;

Ottoy et al., 2019), we had proved in this study that WMH-related

brain structural disconnnectome is a promising image marker for AD

progression.

4.4 | Limitations and future directions

Several limitations of this study should be noted. First, we only

enrolled 44 subjects in pMCI group in this study, which is a small data-

set for lesion-symptom mapping studies. Larger and multicenter data-

sets are needed for further investigation. Second, most of the subjects

in our study underwent three visits during 3–5 years, in subjects with

progressive cognitive deficit, a longer and more frequent visits for

assessing neuroimaging and clinical evaluation should benefit longitu-

dinal lesion-symptom mapping studies. Last, we used indirect mapping

to characterize the location of WMHs within specific parcel-wise

brain connectivity. In this case, fiber tracking was performed in other

healthy subjects to compute an atlas for lesion mapping, thus we did

not unravel how the presence of WMHs affect the diffusion proper-

ties of the traversed fiber tracts. Methods of building brain connectiv-

ity directly in cohorts with heavy WMH burden are important for

further investigation.

5 | CONCLUSION

We used an atlas-guided indirect mapping framework to detect

WMH-related spatial–temporal progressive brain structural discon-

nectome during AD neurodegeneration process. Our results found

that connections between: (1) parahippocampal gyrus and superior

frontal gyrus, orbital gyrus, and lateral occipital cortex; and (2) hippo-

campus and cingulate gyrus are vulnerable to the attack of regional

WMHs in patients on the AD continuum. By developing and
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evaluating prediction models, we further showed that WMH-related

brain structural disconnectome can be used as promising predictor for

conversion from MCI to dementia. These results indicated that a syn-

ergistic relationship exists between multiple contributors of AD: cere-

bral small vessel, amyloid-β accumulation and hyperphosphorylation

of tau, as they attack similar brain connections at the early

stage of AD.
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APPENDIX A

A.1 | Gray matter parcellation

The parcellation template for constructing parcel-wise connectome

consisted of 31 gray matter regions. Labels, region names and

abbreviations are Label 1: superior frontal gyrus (SFG), label 2: mid-

dle frontal gyrus (MFG), label 3: inferior frontal gyrus (IFG), label 4:

orbital gyrus (OrG), label 5: precentral gyrus (PrG), label 6: paracen-

tral lobe (PCL). These are regions in frontal lobe. Label 7: superior

temporal gyrus (STG), label 8: middle temporal gyrus (MTG), label

9: inferior temporal gyrus (ITG), label 10: fusiform gyrus (FuG),

label 11: parahippocampal gyrus (PHG), label 12: posterior superior

temporal sulcus (pSTS). These are regions in temporal lobe. Label

13: superior parietal lobule (SPL), label 14: inferior parietal lobule

(IPL), label 15: precuneus (PCun), label 16: postcentral gyrus (PoG).

These are regions in parietal lobe. Label 17: insular lobe (INS). Label

18: cingulate gyrus (CG). Label 19: lingual gyrus (LinG), label 20:

cuneus gyrus (CunG), label 21: ventromedial parieto-occipital sul-

cus (vmPOS), label 22: lateral occipital cortex (LOcC). These are

regions in occipital lobe. Label 23: amygdala (Amyg), label 24: hip-

pocampus (Hippo), label 25: caudate nucleus (Caud), label 26: glo-

bus pallidus (GP), label 27: nucleus accumbens (NAC), label 28:

putamen (Put), label 29: thalamus (Tha). These are regions of sub-

cortical nuclei. Label 30: cerebellum gray matter, label 31: vermis.

Parcellations from both hemispheres were combined to a single

gray matter region.
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